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Abstract: This paper focuses on the innovative application of multimodal artificial intelligence-
generated content (AIGC) in robot environmental perception and behavior planning. By 
systematically combining the theoretical framework and evolution path of multimodal AIGC 
technology, its transformative effect on traditional robot perception and planning methods is deeply 
analyzed. Studies have shown that multimodal AIGC technology effectively solves the perception 
limitations of robots in complex environments and improves planning efficiency through data fusion, 
generative model construction, and transfer learning optimization. Combined with the actual cases of 
intelligent warehousing robots and guide robots, this study verifies the remarkable effectiveness of 
this technology in improving the robot's environmental understanding ability and decision-making 
intelligence. It provides new theories and practices for the development of intelligent robots. 

1. Introduction 
With the rapid development of artificial intelligence technology, robots are increasingly used in 

industrial production, public services, and emergency rescue. However, traditional robots are limited 
by single-modal perception technology and classic behavior planning algorithms, and have low 
adaptability and decision-making ability in complex dynamic environments. For example, in 
warehousing and logistics scenarios, robots that rely on lidar are prone to misjudgment of 
environmental information when blocked by goods. Robots based on traditional path planning 
algorithms find it difficult to quickly generate the optimal action plan when faced with sudden 
obstacles. Multimodal AIGC technology integrates multiple data sources such as text, images, and 
audio. It uses advanced models such as generative adversarial networks and Transformers to build an 
environmental perception and decision-making system with more human cognitive characteristics, 
providing key technical support for the intelligent upgrade of robots. Exploring innovative ways for 
multimodal AIGC technology to empower robots has important theoretical and practical significance 
for promoting the development of robot technology and expanding application scenarios. This study 
aims to reveal the internal mechanism of multimodal AIGC technology to empower robots. Through 
technical principle analysis, current situation analysis, and application case verification, provide 
theoretical support and practical paths for the intelligent upgrade of robots, and help them be deeply 
applied in industrial manufacturing, public services, and emergency rescue [1]. 

2. Overview of Multimodal AIGC Technology  
2.1 Theoretical Framework and Technical Evolution of Multimodal Data Fusion 

Multimodal data fusion aims to integrate heterogeneous data such as images, voices, and sensor 
signals to build a comprehensive environmental cognition model. Its theoretical basis can be traced 
back to the theory of "cross-channel perception integration" in cognitive science - the human brain 
achieves a robust understanding of complex environments by integrating multi-channel information 
such as vision, hearing, and touch [2]. Inspired by this, multimodal data fusion technology solves the 
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semantic gap and spatiotemporal alignment problems between modalities through mathematical 
modeling and algorithm design. Its technical evolution can be divided into three stages:  

The first is the early feature splicing and statistical learning stage (2000-2010). This stage mainly 
uses linear algebra methods to achieve feature-level fusion. Serial fusion directly splices feature 
vectors of different modalities to form a high-dimensional feature space. For example, in early robot 
navigation, the three-dimensional coordinates of the lidar were spliced with the visual edge features 
and input into the support vector machine for obstacle classification, with an accuracy rate of 12% 
higher than that of a single modality [3-4]. Statistical fusion based on probabilistic graphical models 
uses tools such as Bayesian networks to describe the dependencies between modalities. In medical 
robots, the Bayesian network is used to fuse ultrasound images and force feedback data to identify 
the type of tissue contacted by surgical instruments, with an accuracy rate of 83%. However, linear 
models are difficult to capture the complex nonlinear relationships between modalities. 

The second is the semantic fusion stage driven by deep learning (2011-2020). The rise of deep 
learning has pushed multimodal fusion into the semantic stage. The joint embedding model uses 
encoders to map multimodal data to a shared semantic space. For example, the FVQA model uses 
CNN and LSTM to encode images and questions respectively, and generates a joint embedding vector 
to achieve image question answering, with an accuracy rate of 72%. In robot command understanding, 
similar architectures can improve the accuracy of command execution to 89%. The self-attention 
mechanism of the Transformer architecture has become the core of cross-modal interaction. In multi-
sensor target tracking, the weights of each modality can be dynamically adjusted according to the 
environment, reducing the target tracking error by 41% in complex environments [5]. 

The third is the generative fusion stage driven by AIGC (2021 to present). At present, active fusion 
is achieved with the generative model as the core. GAN can be used to fill in missing modal data. For 
example, when the tactile sensor fails, CycleGAN generates a virtual tactile signal, which restores 
the robot's grasping success rate from 58% to 87%. Causal reasoning fusion based on causal Bayesian 
network can mine the causal relationship between modalities. In autonomous driving, the connection 
between rainy and foggy weather and extended braking distance can be identified in advance, and 
braking can be triggered 500ms in advance, shortening the braking distance by 15%. 

2.2 Core Theory and Technological Breakthroughs of AIGC Generative Model 
The AIGC generation model simulates the human cognitive process and gives the robot the ability 

to model the environment and optimize decisions. The core technologies are as follows: 
Generative Adversarial Network (GAN) dual game theory: GAN is based on zero-sum game, and 

fits data distribution through adversarial training between generator and discriminator. Its objective 
function is a minimax game problem. In the field of robotics, StyleGAN can generate diverse factory 
workshop scenes and improve the generalization ability of robot vision models by 35%. Using GAN 
to generate sensor failure data can train robot robustness strategies, increasing the task success rate 
in sensor failure scenarios from 32% to 78% [6]. 

Second, Transformer's self-attention mechanism and cross-modal modeling: Transformer's self-
attention mechanism achieves long-distance dependency modeling of sequence data through specific 
formulas. In multimodal scenarios, the single-stream architecture encodes multimodal data into a 
unified sequence. In the robot command generation task, the command generation accuracy rate 
reaches 91%; the two-stream architecture encodes different modal data separately and then interacts, 
which can reduce the surgical path prediction error in medical robots; hierarchical attention constructs 
a three-level mechanism, which can improve the efficiency of survivor positioning in rescue robots. 

Third, the transfer learning theory of pre-trained models: Pre-trained models such as CLIP and 
FLAVA capture cross-modal common semantics through self-supervised learning, following the 
"pre-training-fine-tuning-reasoning" paradigm. In the pre-training stage, CLIP establishes text-image 
associations in 400 million image-text pairs. In the fine-tuning stage, only a small amount of labeled 
data is needed to adapt to the scene in robot tasks. In the reasoning stage, the model capabilities can 
be activated through text prompt engineering to achieve target cargo positioning. Figure 1 shows 
exploration of cross-modal AlGC integration in Unity3D. 
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Fig. 1 Exploration of Cross-Modal AlGC Integration in Unity3D 

2.3 Theoretical Challenges and Frontier Directions of Multimodal AIGC 
Multimodal AIGC faces three major challenges: modal imbalance, interpretability, and 

computational efficiency. When the modalities are unbalanced, existing methods such as VAE-based 
modal interpolation generate data with a semantic consistency of only 0.72. The black box nature of 
Transformer leads to insufficient interpretability. Currently, the interpretation accuracy rate reaches 
68% through methods such as attention visualization. Multimodal models have a huge number of 
parameters, so lightweight technologies such as model compression and knowledge distillation can 
reduce parameters and increase reasoning speed. In the future, neural symbolic fusion, embodied 
intelligence, and privacy protection will become important development directions. 

3. Analysis of the Current Status of Robot Environment Perception and Behavior Planning 
3.1 Development and Challenges of Robot Environment Perception Technology 
3.1.1 Limitations of Traditional Single-Modal Perception Technology 

The evolution of robot environmental perception technology has gone through a process from 
single-modality dominance to multi-modal fusion. Early single-modal perception technologies relied 
on devices such as lidar and visual sensors, which exposed significant defects in complex 
environments: 

LiDAR achieves three-dimensional modeling through the time-of-flight principle, with an 
accuracy of up to centimeters in static scenes. However, due to physical limitations, the detection 
distance in rainy and foggy weather is shortened to 30%–50% of the nominal value, and the effective 
echo signal from highly reflective surfaces is reduced by 60%, resulting in an increased obstacle miss 
detection rate. In addition, lidar only provides spatial coordinates and lacks the ability to recognize 
the semantics of objects, so it needs to rely on visual sensors for secondary labeling. 

Visual sensors use convolutional neural networks to detect targets, with an accuracy of 95% under 
ideal lighting conditions (such as the YOLOv5 model), but lack environmental robustness. At the 
same time, the processing time for high-resolution images (such as 4K) is 200–500 ms /frame, which 
is difficult to meet the real-time navigation requirements of mobile robots (frame rate ≥ 10 fps). 

Tactile sensors and auditory perception technologies also have dimensional limitations: tactile 
sensors can only provide local force feedback and cannot build a global environmental model; the 
keyword recognition error rate of auditory perception in a noisy environment (signal-to-noise ratio 
<5 dB) is as high as 15%, and the sound source localization error exceeds one meter. 

3.1.2 Breakthroughs in Multimodal Perception Fusion Technology 
Multimodal perception fusion achieves environmental information complementarity by 
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integrating heterogeneous data. The core progress is reflected in spatiotemporal alignment, semantic 
fusion and dynamic robustness improvement. 

The spatiotemporal alignment technology uses the IEEE 1588 precise clock protocol to achieve a 
multi-sensor sampling error of less than 1 ms , and uses Zhang's calibration method and hand-eye 
calibration to control the visual-lidar external parameter error within 0.5°/1 cm, ensuring the temporal 
consistency and spatial uniformity of the data. 

The semantic fusion architecture is divided into early fusion, late fusion and hybrid fusion: early 
fusion projects the lidar point cloud and visual image to a unified grid (such as BEV feature map) at 
the data layer. After processing by the SECOND model, the obstacle detection accuracy reaches 
92.3%, an increase of 18% compared with a single modality; late fusion merges independent modality 
results through non-maximum suppression at the decision layer. For example, after the fusion of 
YOLOv6 and PointPillars, the multi-target tracking accuracy (MOTA) is increased to 89.5%; hybrid 
fusion combines the advantages of both, and the mAP of 3D target detection on the nuScenes dataset 
reaches 56.5%, an increase of 9.2% compared with a single method. 

In terms of dynamic robustness, the accuracy of abnormal data detection based on the isolation 
forest algorithm reaches 95%, and data repair is achieved by combining the interpolation method. 
The medical robot adopts a three-modal redundant design of "vision + force feedback + ultrasound". 
When a single mode fails, the system can still maintain its perception performance, and its robustness 
is improved by 60% compared to a single mode. 

3.2 Evolution and Bottlenecks of Robot Behavior Planning Technology 
3.2.1 Theoretical and Engineering Limitations of Classical Algorithms 

Traditional behavior planning algorithms are stable in static environments, but have significant 
bottlenecks in dynamic and complex scenes: 

Global path planning algorithms such as the Dijkstra algorithm is O(V²+E). In a warehouse map 
with a 10⁴ node scale, the path search takes 2.3 seconds, which cannot meet the real-time requirements 
of industrial scenarios (<500 ms). 

The artificial potential field method (APF) is prone to falling into local minima (such as a 62% 
probability of stagnation in a U-shaped obstacle scenario), and parameter tuning relies on experience, 
with insufficient generalization capabilities. 

In terms of multi-objective optimization, traditional scalar methods (such as weighted summation) 
find it difficult to deal with nonlinear conflicts between objectives such as efficiency, safety, and 
energy consumption, and the optimization results often deviate from the Pareto frontier. For example, 
when a medical robot is transporting, the pursuit of speed may cause the vibration amplitude to exceed 
the safety threshold. 

3.2.2 Behavior Planning and Innovation Based on Deep Learning 
The combination of deep learning and reinforcement learning drives the transformation of 

behavior planning to a data-driven paradigm: 
The end-to-end deep reinforcement learning architecture realizes direct vision-action mapping. 

For example, the NVIDIA DRIVE Constellation system extracts visual features through CNN and 
inputs the PPO model to generate control instructions, with a lane keeping accuracy of 98% in a 
simulation environment. The hierarchical decision-making model adopts the "task planning layer-
action execution layer" architecture, Transformer generates sub-goal sequences, and the DDPG 
algorithm realizes local path tracking, which improves the efficiency of warehouse robot task 
completion by 45%. 

Imitation learning technology converts human expert operation data into a strategy model through 
behavioral cloning, reducing the instrument operation error in the surgical robot to 0.3 mm; inverse 
reinforcement learning (IRL) reverses the reward function from the expert trajectory, reducing the 
probability of the rescue robot entering the dangerous area. 

The decision enhancement technology driven by multimodal information parses natural language 
instructions (such as "bypass the flooded area") through the T5 model, and generates a dynamic 
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obstacle avoidance path based on the visual segmentation results. The command execution accuracy 
rate reaches 91%. The LSTM network predicts the obstacle movement trajectory through sensor time 
series data (error <0.2 m/s), generates an obstacle avoidance strategy 2 seconds in advance, and the 
response speed is 3 times faster than that of traditional algorithms. 

3.3 Enabling Mechanism of Multimodal AIGC Technology 
3.3.1 Application of Generative Modeling in Environmental Perception 

Multimodal AIGC technology improves perception robustness by generating models: CycleGAN 
is used to generate data for extreme scenarios such as rain, fog, and occlusion, expanding the diversity 
of training sets and increasing the recognition accuracy of robot vision models in real harsh 
environments from 65% to 84%. The causal chain of "light intensity, visual features, and recognition 
accuracy" is modeled based on the structural causal model (SCM), and the risk of sensor failure is 
predicted through intervention analysis, triggering the modal switching strategy in advance, thereby 
improving the system robustness by 50%. 

3.3.2 Strategy Generation and Optimization in Behavior Planning 
Generative adversarial networks (GANs) are used for virtual scene rehearsal in behavior planning. 

For example, StyleGAN generates diverse factory layouts, and training the DRL model reduces the 
task failure rate of collaborative robots in a certain automobile factory from 12% to 3.7%. The 
Transformer architecture is used for multi-objective Pareto optimization, generating solution sets and 
dynamically adjusting weights based on human preferences, improving the path planning efficiency 
of service robots by 60%. 

In conclusion, robot environment perception and behavior planning technology has developed 
from single-modal limitations to multimodal fusion optimization and AIGC-enabled innovation. 
Physical properties and algorithmic bottlenecks constrain traditional technologies and cannot cope 
with dynamic and complex environments. Multimodal fusion significantly improves perception 
robustness and planning efficiency through innovations in spatiotemporal alignment, semantic 
association, and deep learning architecture. Multimodal AIGC technology enables robots to perform 
data enhancement, scenario rehearsal, and multi-objective intelligent decision-making through 
generative models and causal reasoning. Future research needs to focus on modeling causal 
relationships between modalities, lightweight model deployment, and understanding of human 
intentions, to promote robots to achieve full-scenario autonomous intelligent decision-making in 
industrial, service, rescue, and other scenarios, and provide theoretical and technical support for 
developing intelligent systems. 

4. Multimodal AIGC Technology Empowers Innovative Practices of Robots 
4.1 Innovative Research on Enabling Environmental Perception: The Case of Intelligent 
Warehouse Robots 

A logistics company adopts the "vision + lidar + IMU" multimodal perception solution, combined 
with the AIGC generation model, to upgrade environmental perception. Faster R-CNN extracts visual 
cargo information, the LOAM algorithm processes lidar data to build a map, and the IMU provides 
posture data. After Transformer fusion, an octree map with semantic labels is generated, and the 
obstacle detection accuracy rate reaches 98.6%. GAN is used to generate a pre-trained visual model 
for simulated warehouse images, which increases the cargo recognition accuracy from 81% to 94% 
and reduces the shelf label OCR recognition error rate. In the face of warehouse layout adjustments, 
the robot can quickly update the map and execute voice commands to generate a detour path.  

4.2 Innovative Research on Enabled Behavior Planning: The Case of Guide Robots 
A museum's guide robot provides personalized tours based on multimodal AIGC technology. By 

analyzing user interests through face recognition and voice commands, the BERT model generates 
interest vectors, significantly improving accuracy [7]. After encoding user interests, exhibition hall 
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heat maps, and robot positions, the DQN algorithm is used to train the path planning strategy, which 
increases the length of stay of tourists on the personalized guided path and improves their satisfaction. 
When interacting with tourists, the robot can simultaneously trigger visual recognition, voice 
explanation, and AR projection. 

5. Conclusion 
Multimodal AIGC technology has brought innovative changes to robot environmental perception 

and behavior planning regarding data fusion, model building, and transfer learning. Cases in the 
industrial and service sectors have shown that this technology significantly improves robots' 
environmental understanding capabilities and decision-making intelligence. In the future, with the in-
depth research and application of technologies such as neural-symbolic fusion, embodied intelligence, 
and federated learning, multimodal AIGC technology will further promote the development of robots 
towards general intelligence, play an important role in more fields, and bring profound changes to 
social production and life. Multimodal AIGC technology empowers robots' environmental perception 
and behavior planning by simulating human cognitive cross-modal integration capabilities and 
creative decision-making mechanisms. From the perspective of application ecology, multimodal 
AIGC technology is reshaping the interaction boundaries between robots and the physical world and 
human society: practice has confirmed the technology's practical value and heralded the possible 
development of "general-purpose intelligent robots". When robots can understand cross-modal 
environments, generate strategies, and continuously learn, their application scenarios will expand 
from structured environments to the open world, from repetitive tasks to complex decision-making 
scenarios. 

The deep coupling of multimodal AIGC technology with robot hardware and industry scenarios 
will become an intelligent interface connecting the physical and digital worlds. From autonomous 
logistics robots in factory workshops, to emergency rescue robots at disaster sites, to service robots 
in home scenarios, multimodal AIGC technology is driving robots to build a new industrial ecology 
in the fields of intelligent manufacturing, smart cities, and medical health, injecting momentum into 
the global intelligent transformation. 
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